Bacterial Adaptation during Chronic Respiratory Infections

نویسندگان

  • Louise Cullen
  • Siobhán McClean
چکیده

Chronic lung infections are associated with increased morbidity and mortality for individuals with underlying respiratory conditions such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). The process of chronic colonisation allows pathogens to adapt over time to cope with changing selection pressures, co-infecting species and antimicrobial therapies. These adaptations can occur due to environmental pressures in the lung such as inflammatory responses, hypoxia, nutrient deficiency, osmolarity, low pH and antibiotic therapies. Phenotypic adaptations in bacterial pathogens from acute to chronic infection include, but are not limited to, antibiotic resistance, exopolysaccharide production (mucoidy), loss in motility, formation of small colony variants, increased mutation rate, quorum sensing and altered production of virulence factors associated with chronic infection. The evolution of Pseudomonas aeruginosa during chronic lung infection has been widely studied. More recently, the adaptations that other chronically colonising respiratory pathogens, including Staphylococcus aureus, Burkholderia cepacia complex and Haemophilus influenzae undergo during chronic infection have also been investigated. This review aims to examine the adaptations utilised by different bacterial pathogens to aid in their evolution from acute to chronic pathogens of the immunocompromised lung including CF and COPD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compromised Defenses: Exploitation of Epithelial Responses During Viral-Bacterial Co-Infection of the Respiratory Tract

Respiratory infections are the greatest single contributor to the overall burden of disease worldwide [1]. Polymicrobial infections are becoming increasingly recognized in terms of both prevalence and their effect on disease severity, causing many common diseases such as oral infections, otitis media, chronic wound infections, and implanted medical device infections, as well as chronic pulmonar...

متن کامل

The biology of bacterial colonization and invasion of the respiratory mucosa.

Despite being regularly exposed to particulate matter during breathing, which contains bacteria from the commensal flora in the nasopharynx and from the environment, the healthy lung is kept sterile by efficient defence mechanisms. Bacterial infections of the respiratory mucosa represent a dynamic interaction, to which both host and bacterial factors contribute. The abnormal host defences assoc...

متن کامل

Burkholderia cenocepacia Differential Gene Expression during Host–Pathogen Interactions and Adaptation to the Host Environment

Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and c...

متن کامل

Bacterial infection and the pathogenesis of COPD.

Bacterial infection of the lower respiratory tract can impact on the etiology, pathogenesis, and the clinical course of COPD in several ways. Several recent cohort studies suggest that lung growth is impaired by childhood lower respiratory tract infection, making these individuals more vulnerable to developing COPD on exposure to additional injurious agents. Impairment of mucociliary clearance ...

متن کامل

Bitter and sweet taste receptors regulate human upper respiratory innate immunity.

Bitter taste receptors (T2Rs) in the human airway detect harmful compounds, including secreted bacterial products. Here, using human primary sinonasal air-liquid interface cultures and tissue explants, we determined that activation of a subset of airway T2Rs expressed in nasal solitary chemosensory cells activates a calcium wave that propagates through gap junctions to the surrounding respirato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015